MATEMATICA

Ejercicios propuestos -

- 1. Uno sólo de los siguientes enunciados no es una proposición. Señale cuál:
 - a) 2 + 2 = 5
 - b) Los aspirantes están rindiendo examen.
 - c) ¡Venga corriendo!
 - d) sen $60^{\circ} = 1/2$
 - e) El agua hierve a 120°.
- 2. Dadas las proposiciones p = "3 + 4 = 7" y q = "5 < 6", una sola de las proposiciones siguientes es falsa. Indique cuál:
 - a) $\prod_{(p)} = \mathbf{v}$
 - b) $\prod_{(a)} = f$
 - c) Lo que se afirma en a) es verdadero.
 - d) Lo que se afirma en b) es falso.
 - e) $\Pi_{(p)} = \Pi_{(q)}$
- 3. Dada la proposición "Aprobaré mis exámenes". Se trata de:
 - a) Una conjunción.
 - b) Una disyunción.
 - c) Una negación.
 - d) Una implicación.
 - e) Ninguna de las anteriores.
- 4. Se sabe que la conjunción p ^ q es verdadera. Entonces se puede afirmar con toda seguridad que:
 - a) p es verdadera y q es falsa.
 - b) p es falsa y q es verdadera.
 - c) Ambas son falsas.
 - d) Ambas son verdaderas.
 - e) No puede sacarse ninguna conclusión.
- 5. Se sabe que p es condición necesaria para q. Entonces puede escribirse:
 - a) $p \Rightarrow q$
 - b) p ^ q
 - c) pvq
 - d) $q \Rightarrow p$
 - e) Ninguna de las anteriores.
- 6. Se sabe que la proposición p es verdadera. Señale cuál de las proposiciones siguientes, requiere del conocimiento del valor de verdad de q, para deducir el valor de verdad de la misma.
 - a) pvq
 - b) ~ p ^ q
 - c) $\sim p \Rightarrow q$
 - d) $p \Rightarrow q$
 - e) $(\sim p \land q) \Rightarrow q$

7. Dada la tabla de verdad de la izquierda, la proposición correspondiente es:

p	q	?
v v f	v f v	v f v
f	f	v

- a) p v q
- b) p ^ q
- c) p => q
- d) $p \ll q$
- e) Ninguna de las anteriores.

8. Se sabe que son ciertas estas dos premisas:

- I) La energía de un átomo puede cambiar con continuidad o cambia sólo a saltos.
- II)La energía interna de un átomo no puede cambiar con continuidad.

Entonces se saca la siguiente conclusión:

- a) La energía interna de un átomo cambia con continuidad.
- b) La energía de un átomo cambia a saltos.
- c) La energía interna de un átomo se mantiene constante.
- d) El átomo no puede tener energía interna.
- e) No puede sacarse ninguna conclusión.

9. Los números: +2, -3, +1, 0, -4, -6 ordenados en forma creciente resultan:

- a) 0, -6, -4, -3, +1, +2
- b) 0, +1, +2, -3, -4, -6
- c) -6, -4, -3, 0, +1, +2
- d) -6, -4, 0, -3, +1, +2
- e) Ninguna de las anteriores.

10. El resultado de (3 - 5).(2 + 4) es:

- a) 0
- b) 8
- c) -8
- d) -12
- e) 12

11. El resultado de [(3+2).(3-1)]:3 es:

- a) -11/3
- b) -14/3
- c) 10/3
- d) 14/3
- e) -10/3

12. Para que -8 -x sea nulo, x debe valer:

- a) El opuesto de -8
- b) 8
- c) -8
- d) El valor absoluto de 8.
- e) Ninguna de las anteriores.

13. El resultado de $2^4.2^3:2^{10}$ es:

- a) 2
- b) 1/8
- c) -8
- d) -2
- e) 8

14.	El resultado	de la operación	

$$\frac{\left(3^2.3^5.3\right)^4}{2^{28}}$$
 ex

- a) 3^{-14}
- b) 3⁻⁴
- c) 3¹⁴
- d) 3⁴
- e) 3⁻²

15. El resultado de la operación $[(1-3)^2:3]^2 - 8^0$ es:

- a) 7/9
- b) 4/9
- c) -68/9
- d) 0
- e) -5/9

16. El numeral (en base 2): 1110 equivale al numeral (en base 10).

- a) 111
- b) 14
- c) 10
- d) 7
- e) 3

17. Si el numeral 28 (en base 10) es igual a 11100 (en base 2) entonces el numeral 14 (en base 10) es igual a uno de los siguientes en base 2. Indique a cuál:

- a) 5550
- b) 1110
- c) 550
- d) 1010
- e) 1001

- 19. Una rueda de 1m de diámetro ha dado 140 vueltas en un trayecto ¿Cuántas vueltas dará otra rueda de 70 cm de diámetro en ese mismo recorrido?
- 20. Veinticuatro obreros trabajando 6 horas por día, emplean 2 meses y medio para realizar un trabajo. Si el plazo es de 1 mes y medio ¿Cuántos obreros que trabajen 8 horas diarias se necesitan?

21. La suma
$$2\sqrt[3]{3a^2} + \sqrt[3]{3a^2} + 5\sqrt[3]{3a^2}$$
 es igual a:

- a) $8\sqrt[3]{9a^2}$
- b) $8\sqrt[3]{27a^6}$
- c) $8\sqrt[9]{3a^2}$
- d) $8\sqrt[27]{3a^2}$
- e) $8\sqrt[3]{3a^2}$

22. La expresión

$$\sqrt[4]{\sqrt{a+b}}$$

es igual a:

a)
$$\sqrt[6]{a+b}$$

b)
$$\sqrt[6]{a} + \sqrt[6]{b}$$

c)
$$\sqrt[8]{a+b}$$

d)
$$\sqrt[8]{a} + \sqrt[8]{b}$$

e)
$$\sqrt[6]{a^2 + b^2}$$

23. Al simplificar el radical $\sqrt[16]{16.a^8 b^{12}}$ resulta:

- a) $\sqrt[4]{16.a^2.b^3}$
- b) $4\sqrt{4.a^8.b^{12}}$
- c) $\sqrt[4]{2.a^2.b^3}$
- d) $4\sqrt{4.a^2.b^3}$
- e) $\sqrt[4]{4.a^4.b^6}$

24. La potencia de exponente fraccionario $a^{m/n}$ es igual a:

- b) $\sqrt[m]{a^n}$
- c) $\sqrt[n]{a:m}$
- d) $\sqrt[m]{a.n}$
- e) $\sqrt[m]{n^a}$

25. La expresión 8m^{-3/4} es igual a:

- a) $\frac{1}{\sqrt[4]{(8m)^3}}$ b) $\frac{8}{\sqrt[4]{m^3}}$
- c) $\frac{8}{\sqrt[3]{m^4}}$
- d) $8.\sqrt[3]{m^4}$
- e) $\sqrt[4]{8 \, m^3}$

26. Efectuando $\sqrt{50a^3}$ - $\sqrt{8a^3}$ - $\sqrt{18a^3}$ se obtiene como resultado:

es igual a:

- a) a $\sqrt{24a}$
- b) 0
- c) $\sqrt{24}$
- d) $\sqrt[6]{24 \ a^3}$

e) Ninguna de las anteriores

27. La expresión

$$\sqrt[3]{\left[\left(\frac{8}{a}\right)^2\right]^{\frac{-1}{2}}}$$

b)
$$-\sqrt[3]{1+a}$$

c)
$$\sqrt[3]{8/a}$$

$$\sqrt[3]{a}$$

$$\frac{-1-a}{\sqrt[3]{(1+a)^2}}$$
 se obtiene:

b) -
$$\sqrt[3]{1+a}$$

c)
$$\frac{\sqrt[3]{(1+a)^2}}{1+a}$$

e)
$$(1-a)\sqrt{1+a}$$

29. Si
$$\left(\frac{2}{x}\right)^{\frac{-1}{3}} = -\frac{1}{3}$$
 entonces x es:

30. El producto

$$\sqrt[3]{2a^2}$$
 . $\sqrt[3]{4ab}$. $\sqrt[3]{b}$ es igual a:

a)
$$\sqrt[9]{8a^3b^2}$$

b) 2 a
$$\sqrt[3]{b^2}$$

c)
$$\sqrt[27]{8a^3b^2}$$

d)
$$\sqrt[3]{6a^3b^2}$$

e) $\sqrt[9]{6a^2b}$

e)
$$\sqrt[9]{6} a^2 b$$

31. La raíz de índice impar de x, siendo x < 0 da:

- Dos resultados, uno positivo y otro negativo de igual valor absoluto.
- Un solo resultado de signo negativo.
- c) Un solo resultado de signo positivo.
- Un solo resultado nulo y otro de signo negativo.
- No tiene resultado real.

32. La expresión $(a^{2/3})^{-1/5}$ es igual a:

a)
$$a^{-10/3}$$

b)
$$a^{7/15}$$

c)
$$a^{13/15}$$

d)
$$a^{-2/15}$$

e)
$$a^{-1/2}$$

33. La operación

$$[3^{1/3} + (3a)^{1/6} + a^{1/3}].(3^{1/6} - a^{1/6})$$
 da como resultado:

a)
$$\sqrt{a} - \sqrt{3}$$

b)
$$\sqrt{3} + \sqrt{a}$$

c)
$$\sqrt{3} - \sqrt{a}$$

e)
$$3+a$$

34. El resultado de la operación $(5^2)^{1/2}$ - $(5^{3/2})^{2/3}$ + 5^{-2} es:

c)
$$-1/25$$

35. Al racionalizar el denominador en la expresión

$$\frac{1}{\sqrt{m+1}-\sqrt{m}}$$
 se obtiene:

a)
$$\sqrt{m+1} - \sqrt{m}$$

c)
$$\sqrt{m+1} + \sqrt{m}$$

d)
$$\sqrt{m} - \sqrt{m+1}$$

e) Ninguna de las anteriores.

36. El grado del monomio $\frac{4}{x} \int_{y}^{5} es$:

37. El grado del polinomio $3x^{3} - 2x^{4} + 5x - 6x^{2} + 1$ es:

38. En la resta $P(x) - (4x^2 - 3x) = x + 1$, P(x) es:

a)
$$4x^2 - 2x + 1$$

b)
$$-4x^2 + 2x + 1$$

c)
$$4x^2 - 2$$

c)
$$4x^{2} - 2$$

d) $-4x^{3} - x^{2} + 3x$

39. El producto de dos monomios es $\begin{bmatrix} 4 & 2 \\ -4a & b & c \end{bmatrix}$, si uno de ellos es $\begin{bmatrix} 2 & 3 \\ b & c \end{bmatrix}$, el otro monomio es:

- b) $\frac{1}{a^3}b^2$
- c) $2a^2 b^{-1}$
- d) $-a^2b^{-1}$
- e) $2a^{-2}b$

40. El mínimo común múltiplo de los monomios: 6ab x ; 12a b y 4a bx **es:**

- b) $12a^3b^3x^2$
- c) $12a^2 b^3$
- d) 2abx
- e) 96a⁶b⁶x³

41. El máximo común divisor de los monomios $40x^2$ y $70x^3$ es:

- $28x^3$ b)
- c) 40x
- d) 2800x⁵

42. Descomponiendo en factores el binomio
$$1 - x^8$$
 se obtiene:

- a) $(1-x)^8$
- b) $(1-x^7).(1-x)$
- c) $(1-x)^4 \cdot (1+x)^4$
- d) $(1+x)^4 \cdot (1-x)^2$

e)
$$(1+x^4) \cdot (1+x^2) \cdot (1+x) \cdot (1-x)$$

43. Factoreando $a^3 + b^3$ se obtiene:

- a) $(a+b) \cdot (a^2 ab + b^2)$
- b) $(a + b)^3$
- c) $(a-b) \cdot (a^2 b^2)$
- d) $(a+b) \cdot (a^2 + 2ab + b^2)$
- e) $(a+b) \cdot (a^2 + b^2)$

a)
$$(2x-1) \cdot (x-2)$$

b)
$$(2x+1) \cdot (x-2)$$

c)
$$(2x + 1) \cdot (x - 2)$$

d)
$$(2x-1) \cdot (x+2)$$

e)
$$(4x-1) \cdot (2x-1)$$

45. Simplificando la expresión

. Simplificando la expresión
$$\frac{x^2}{x^2 - x}$$
 se obtiene:

$$1-x$$

c)
$$\frac{x}{x-1}$$

d)
$$-\frac{1}{x}$$

e)
$$\frac{1}{x} - x$$

46. Simplificando la expresión

$$\frac{9x^2 - 12x + 4}{9x^2 + 4}$$

se obtiene:

a)
$$-12x - 1$$

b)
$$\frac{2 + 3 \times x}{3 \times x - 2}$$

d)
$$\frac{3 \ x - 2}{2 + 3 \ x}$$

$$e)$$
 -1

47. Dados los polinomios D(x) (dividiendo), d(x) (divisor), Q (x) (cociente) y R (x) (resto) se verifica:

a)
$$\frac{D(x)}{d(x)} = Q(x) + \frac{R(x)}{d(x)}$$

b)
$$\frac{D(x)}{d(x)} = Q(x) + R(x)$$

c)
$$D(x) = Q(x) + d(x) \cdot R(x)$$

d)
$$\frac{D(x)}{d(x)} = \frac{Q(x)}{d(x)} + R(x)$$

e)
$$D(x) + R(x) = Q(x) \cdot d(x)$$

48. Siendo $D(x) = x^{\frac{5}{3}} + 10x^{\frac{3}{2}} + 10x^{\frac{3}{2}}$; $d(x) = x^{\frac{3}{2}} + 3x^{\frac{2}{2}}$; $Q(x) = x^{\frac{2}{3}} - 3x + 19$ el resto es:

49. Siendo $D(x) = 8x^{\frac{3}{2}} + 36x^{\frac{2}{2}} + 54x + 13$, $d(x) = 4x^{\frac{2}{2}} + 12x + 9$, R(x) = -14 el cociente Q(x) es:

- a) 3x + 2
- b) 2x + 3
- c) -2x + 3
- d) -3x + 2
- e) 2x 3

50. Siendo $\mathbf{D}(\mathbf{x}) = \begin{bmatrix} 1 & 3 & 2 \\ -\mathbf{x} & +2\mathbf{x} \end{bmatrix} + 3\mathbf{x} - 2 \quad \mathbf{y} \quad d(\mathbf{x}) = \mathbf{x} + 3 \quad \text{, el resto es:}$

- a) -13
- b) -2/13
- c) -13/2
- d) 13/2
- e) 2

51. Desarrollando $(-x+1)^3$ se obtiene como resultado:

- a) $-x^3 + 1$
- b) $x^3 3x^2 + 3x -$
- $1 c) x^3 3x + 1$
- d) $-x^3 + 3x^2 3x + 1$
- e) $x^3 + 3x^2 + 3x + 1$

52. Simplificando la expresión $\frac{x^2 - 4}{3x - 2} = \frac{2 - 3x}{x^2 - 2x}$ se obtiene:

- $\frac{x+2}{x}$
- b) $\frac{x}{x+2}$
 - -(x+2)
- c) X
- $\frac{-x}{x+2}$
- e) Ninguna de las anteriores

53. Simplificando la expresión algebraica $\frac{25-a^2}{ax+5x-ay-5y} \cdot \frac{y^2-x^2}{x+y}$ se obtiene:

- a) a 5
- b) a
- c) 5 a
- d) 5 + a
- e) 5a

54. Simplificando la expresión $\frac{a^2-b^2}{a^2+ab}:\frac{a^2-2ab+b^2}{ac}$ se obtiene

- a) $\frac{c}{a-ab}$
 - b) $\frac{2c}{c}$
- c) a/c
- d) 2
- e) $\frac{c}{a-b}$

$$\begin{vmatrix} x & 1 \\ \frac{1}{2} & 2 \end{vmatrix} : \frac{1}{a-1} \begin{vmatrix} x & 3a-3x \end{vmatrix}$$
 se obtiene

- a) 3x
- b) x
- c) 9x
- d) 0
- e) Ninguna de las anteriores.

56. Simplificando la expresión

$$\frac{5a + 5b - a^2 - ab}{5a + 5b + a^2 + ab} : \frac{2a - 10}{a^2 - 25}$$
 se obtiene:

- a) 5-a
- b) 5 a/2
- c) 5 a/3

$$\frac{5-a}{d}$$

2

e) a

., ..

57. Sea $A = \{1;2;3\}$. Entonces la relación R en A dada por $R = \{(x;y)/y > x\}$, es igual a:

- a) {(1;1); (2;2); (3;3)}
- b) {(1;1); (1;2); (1;3)}
- c) {(1;2); (1;3); (2;3)}
- d) {(2;1); (2;3); (2;2)}
- e) $\{(2;1);(3;1);(3;2)\}$

58. La relacion en $A = \{a;b;c;d;e;f\}$, dada por el siguiente cuadro:

	a	b	c	d	e	f
a	(a;a)	(a;b)	(a;c)			
b		(b;b)	(b;c)	(b;d)		
c			(c;c)	(c;d)	(c;e)	
d		(d;b)		(d;d)	(d;e)	(d;f)
e	(e;a)				(e;e)	(e;f)
f	(f;a)	(f;b)				(f;f)

Tiene por dominio el conjunto:

- a) $A = \{a;b;c;d;e;f\}$
- b) $\{a;e;f\}$
- c) {a;b;c}
- d) {b;c;d;e}
- e) Ninguna de las anteriores.

59. Representar gráficamente y hallar domino e imagen de:

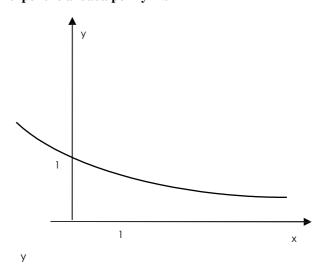
a)
$$y = 2x - 1$$

b)
$$y = x^2 + 1$$

a)
$$y = 2x - 1$$

b) $y = x^{2} + 1$
c) $f(x) \begin{cases} x^{2} - 1 & \text{si } 1 < x \le 3 \\ x + 1 & \text{si } x \le 1 \end{cases}$

60. Si a es un numero real, entonces
$$\begin{pmatrix} 3 & x \\ (a &) \end{pmatrix}^x$$
 es:


a)
$$a^3 + x$$

$$x^3$$

b)
$$a_{x}$$

c)
$$a^{3}$$
 d) a^{3x}

61. Considerando la función exponencial dada por $y = b^{x}$ (con b > 0), el gráfico siguiente corresponde al caso:

c)
$$b < 1$$

d)
$$b = e = 2,7181...$$

e)
$$b > e = 2,7181...$$

62. El valor de x que reemplazado en la ecuación exponencial $y = e^{-3x}$, hace que $y = \sqrt{e}$ es

b)
$$-6$$

d)
$$-1/6$$

63. El valor de x que satisface la igualdad:

$$\frac{x}{3} - \frac{2x}{3} = \frac{4}{15}$$

a) b = 2

b) b > 1

 $(con \ a \neq 0)$ el valor de la incógnita x que satisface la ecuacion es

 $\frac{m}{x} = \frac{5}{3x} + \frac{m}{2}$ es: siendo m \neq 0 65. El valor de x en la ecuación

a)
$$x = 2(m-5)$$

b)
$$x = 2(m-5) / m$$

c)
$$x = 2(3m - 5) / 3m$$

d)
$$x = 2(m-5)/3m$$

66. El valor de x en la ecuación $\frac{x}{a} + \frac{x}{a} = \frac{a+b}{ab}$ es:

$$\frac{x}{x-3} - \frac{5}{x-2} = \frac{x-1}{(x-3)(x-2)}$$
 es

67. El valorede x que satisface la ecuación

$$x+5$$
 1-x $(x+5)(a-x)$

a)
$$-1$$

69. Los valores de x e y que satisfacen

$$\begin{cases} x + 2y = 5 \\ y - 2x = 10 \end{cases}$$
 son

a)
$$x = 3$$
; $y = 4$

b)
$$x = 1$$
; $y = 0$

c)
$$x = -4$$
; $y = 3$

d)
$$x = -3$$
; $y = 4$

e)
$$x = 2$$
; $y = 0$

70. Los valores de x e y que satisfacen x e y que satisfacen:

$$\begin{cases} x + y = -8 \\ y - x = 14 \end{cases}$$
 som

a)
$$x = 3$$
; $y = 5$

b)
$$x = -3$$
; $y = -5$

c)
$$x = -3$$
; $y = 5$

d)
$$x = 5$$
; $y = 3$

e) Ninguna de las anteriores.

71. La solución del sistema

$$\begin{cases} 3x + 2y = 6 & \text{está dada por:} \\ 2x - 5y = 23 \end{cases}$$

a)
$$x = 2$$
; $y = 10$

b)
$$x = 0$$
; $y = 6$

c)
$$x = 0$$
; $y = -5/23$

d)
$$x = 4$$
; $y = -3$

e) Ninguna de las anteriores.

72. La solución del sistema

$$\begin{cases} ax + by = c & con a \neq 0; b \neq 0 \text{ es:} \\ 3ax - by = 7c \end{cases}$$

a)
$$x = 2c$$
; $y = c$

b)
$$x = 2c/a$$
; $y = -c/b$

c)
$$x = -2c/a$$
; $y = c/b$

d)
$$x = 0$$
; $y = 1$

e) Ninguna de las anteriores.

73. El sistema

$$\begin{cases} 2x + 3y = 6 & \text{resulta ser} \\ 4x - 6y = 2 \end{cases}$$

b) Satisfecho por
$$x = y = 0$$

e) Ninguna de las anteriores.

74. Las raíces de la ecuación

$$3x^2 - 15x = 0$$
 son:

a)
$$x_1 = 1$$
; $x_2 = 0$

b)
$$x_1 = 2$$
; $x_2 = 0$

c)
$$x_1 = 0$$
; $x_2 = 3$

d)
$$x_1 = 0$$
; $x_2 = 5$

e) Ninguna de las anteriores.

75. Las raíces de la ecuación $2x^2 - 12x + 10 = 0$ son:

e) Ninguna de las anteriores.

76. El valor del discriminante de $4x^2 - 7x - 18 = 0$

e) Ninguna de las anteriores.

77. El valor de m, para que las raíces de $x^2 + 6x + m = 0$ sean iguales, es:

- a) 9
- b) 10
- c) 11
- d) 12
- e) Ninguna de las anteriores.

78. La ecuación de 2º grado cuyas raíces son 3 y 4 es:

a)
$$x^2 - 5x - 2 = 0$$

b)
$$3x^2 + 5x + 2 = 0$$

c)
$$3x^2 + 5x - 2 = 0$$

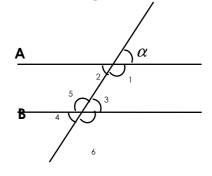
d)
$$x^2 + 5x - 2 = 0$$

e) Ninguna de las anteriores.

79. Las raíces de la ecuación: $x^2 - 4x + 13 = 0$ son:

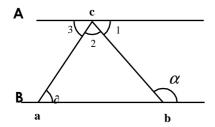
- a) Reales y distintas.
- b) Reales e iguales.
- c) No existen raíces en el campo real.
- d) Son 3 y 5.
- e) Ninguna de las anteriores.

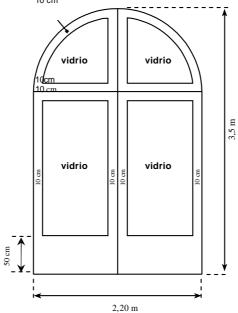
80. El conjunto solución de la ecuación $x^3 - 5x^2 + 4x = 0$ es


- a) $\{0;1;4\}$
- b) {0;1;2}
- c) $\{0;2;3\}$
- d) {1;2;3}
- e) Ninguna de las anteriores.

81. Para que el trinomio $x^2 + 6x + h$ sea un trinomio cuadrado perfecto, h debe ser igual a:

- a) 3
- b) -3
- c) 9
- d) -9
- e) 2


82. Hallar el valor de los ángulos indicados en los siguientes gráficos con números.


A // **B** /
$$\alpha$$
 / = 40°30′

b)

$$A //B /\alpha /= 120^{\circ} /\partial /= 45^{\circ}$$

83. Se desea saber cuantos litros de pintura se necesita para pintar la parte no vidriada del portón de la figura, sabiendo que 1 litro alcanza para cubrir una superficie de 2m².

- 84. El techo abovedado de uno de los túneles que atraviesa la Manzana de Las Luces de la Capital Federal tiene forma de semicírculo de 120 m de largo; las secciones transversales son semicírculos de 3 m de diámetro. ¿Cuál es la superficie del techo?
- 85. ¿Cuál es la fórmula que permite calcular el volumen de un cono circular, conociendo el radio de la base $\,R\,$, la altura $\,h\,$ y su generatriz $\,g$?.

a)
$$V = 2\pi R^2 g$$

b)
$$V = (2/3) 2\pi R^2 g$$

c)
$$V = (1/2) \pi R^2 h$$

d)
$$V = (1/3) \pi R^2 h$$

e)
$$V = (1/2) \pi Rgh$$

86. Si a es la arista de un cubo, determinar el valor de su diagonal d.

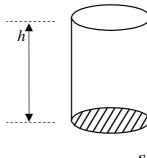
b)
$$d = a \sqrt{3}$$

c)
$$d = a \sqrt{4}$$

d)
$$d = \frac{a}{\sqrt{2}}$$

e)
$$d = \frac{a}{\sqrt{3}}$$

- d
- 87. Cuál es la expresión que permite calcular la superficie lateral S_L , de un cilindro recto, sabiendo que se conoce la altura h, y la superficie del circulo de la base S_B ?

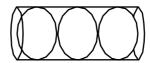

a)
$$S_I = \sqrt{S_B \pi}$$

a)
$$S_L = \sqrt{S_B \pi}$$

b) $S_L = \frac{h\sqrt{S_B \pi}}{2}$

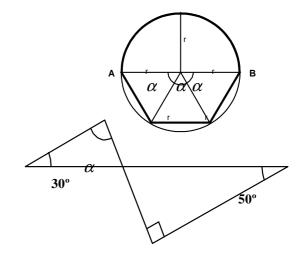
c)
$$S_L = \pi \frac{h\sqrt{S_B}}{2}$$

$$d) \quad S_L = 2\pi h \sqrt{S_B}$$


e)
$$S_L = 2h\sqrt{S_B\pi}$$

- 88. Un tanque posee una base rectangular de 10 cm por 5 cm y una altura de 20 cm. ¿Qué altura alcanzara el agua si se vertieron 325 cm³ dentro de él?
 - a) 6 cm
 - b) 6,5 cm
 - c) 7 cm
 - d) 7,5 cm
 - e) 8 cm
- 89. En cierto examen de n preguntas, el puntaje se calcula así: 1 punto por cada respuesta correcta y 1/4 de punto se quita por cada respuesta incorrecta. Si Elena respondió a todas las preguntas y obtuvo un 10, ¿Cuántas respuestas correctas respondió?.
 - n 10

 - $\frac{n}{-10}$
 - n 10


 - e) $8 + \frac{n}{}$
- 90. Si el promedio (media aritmética) de a, b, c y d es igual al promedio de a, b y c; ¿Qué es "d" en términos de a, b, y c?
 - a) a + b + c
 - b) (a + b + c)/3
 - c) 4(a+b+c)/3
 - d) 3(a+b+c)/4
 - e) (a + b + c)/4
- 91. Tres bolitas idénticas caben dentro de un cilindro. El radio de las esferas es igual al radio de este último y las bolitas tocan su base y su tope. Sí la fórmula del volumen de la esfera es $(\frac{4}{3}) \pi r^3$. ¿Cuál es la fracción del volumen que corresponde a las bolitas? Observe que no se le piden cálculos numéricos.
 - a) 3/2
 - b) 1/3
 - c) 2/3
 - d) $(1/2) \pi$
 - e) $(1/3) \pi$

- 92. En esta figura AB es su diámetro ¿Cuál es el perímetro de la figura marcada con línea gruesa?. Observe que no le piden cálculos numéricos.
 - a) $r(\pi + 3)$
 - b) $r(2\pi + 3)$
 - c) $r(\pi + 3\sqrt{2})$
 - d) $r(\pi + 3\sqrt{3})$
- 93. ¿Cuánto mide α ?

- b) 110°
- c) 120°
- d) 130°
- e) 150°

Respuestas:

1. c	2. b	3. e	4. d	5. d		
6. d	7. c	8. b	9. c	10. d		
11. c	12. c	13. b	14. b	15. a		
16. b	17. b	18. 80 paquetes	19. 200 vueltas	20. 30 obreros		
21. e	22. c	23. с	24. a	25. b		
26. b	27. d	28. b	29. с	30. b		
31. b	32. d	33. c	34. e	35. c		
36. e	37. c	38. a	39. d	40. b		
41. a	42. e	43. a	44. e	45. c		
46. d	47. a	48. c	49. b	50. c		
51. d	52. c	53. a	54. e	55. c		
56. d	57. c	58. a				
59. a) "R;R" b) "R; $[1; + \square]$ " c) "(- $\square;3$); $(-\square;8)$ "						
60. d	61. c	62. d	63. e	64. e		
65. c	66. a	67. a	68. d	69. d		
70. e	71. d	72. b	73. c	74. d		
75. c	76. e	77. a	78. e	79. c		
80. a	81. c	82. a) $\hat{1} = \hat{6} = \hat{4} = 139^{\circ}30'$	b) 60°, 75°	, 45°		
83. 1,334 / E 1,5 /	84. 565,2 <i>m</i> ²	85. d	86. b	87. e		
88. b	89. e	90. b	91. c	92. a		
93. d						